221

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Jazii, R. F., Yamchi, A., Hajirezaei, M., Abbasi, A. R., & Karkhane, A. A., (2011). Growth

assessments of Nicotiana tabacum cv. xanthi transformed with Arabidopsis thaliana P5CS

under salt stress. Afr. J. Biotechnol., 10, 8539–8552.

Jia, D., Jiang, Q., Van, N. S., Gong, X., & Ma, F., (2019). An apple (Malus domestica) NAC

transcription factor enhances drought tolerance in transgenic apple plants. Plant Physiol.

Biochem., 139, 504–512.

Jiang, C., Xu, J., Zhang, H., Zhang, X., Shi, J., Li, M., & Ming, F., (2009). Acytosolic class

I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety

of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ., 32,

1046–1059.

Jiang, W. Y., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A., (2013a). RNA-guided editing

of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31, 233–239.

Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P., (2013b).

Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in

Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 41, e188.

Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., Lu, W., et al., (2014). Genome-wide

identification and characterization of the Populus WRKY transcription factor family and

analysis of their expression in response to biotic and abiotic stresses. J. Exp. Bot., 65,

6629–6644.

Jiang, Y., Liang, G., & Yu, D., (2012). Activated expression of WRKY57 confers drought

tolerance in Arabidopsis. Mol. Plant., 5, 1375–1388.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., Charpentier, E., (2012). A

programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

Science, 337, 816-821.

Jisha, V., Dampanaboina, L., Vadassery, J., Mithöfer, A., Kappara, S., & Ramanan, R., (2015).

Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and

abiotic stress tolerance in rice. PloS One, 10, e0127831.

Jyothsnakumari, G., Thippeswamy, M., Veeranagamallaiah, G., & Sudhakar, C., (2009).

Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biol.

Plant., 53, 145–150.

Kang, C., Zhai, H., He, S., Zhao, N., & Liu, Q., (2019). A novel sweetpotato bZIP transcription

factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis.

Plant Cell Rep., 38, 1373–1382.

Kang, J. Y., Choi, H. I., Im, M. Y., & Kim, S. Y., (2002). Arabidopsis basic leucine zipper

proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 14, 343–357.

Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mantyla, E., et

al., (2007). Improved drought tolerance without undesired side effects in transgenic plants

producing trehalose. Plant Mol. Biol., 64, 371–386.

Karthikeyan, A., Pandian, S. K., & Ramesh, M., (2011). Transgenic indica rice cv. ADT 43

expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia

demonstrates salt tolerance. Plant Cell Tissue Organ Cult., 107, 383–395.

Kasuga, M., Liu, Q., Miura, S., Yamaguchi, S., & Shinozaki, K., (1999). Improving plant

drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription

factor. Nat. Biotechnol., 17, 287–291.

Kasuga, M., Miura, S., & Yamaguchi-Shinozaki, K., (2004). A combination of the Arabidopsis

DREB1A gene and stress inducible rd29A promoter improved drought and low temperature

stress tolerance in tobacco by gene transfer. Plant Cell Physiol., 45, 346–350.